

HYDROG(E)NICS SHIFT POWER | ENERGIZE YOUR WORLD

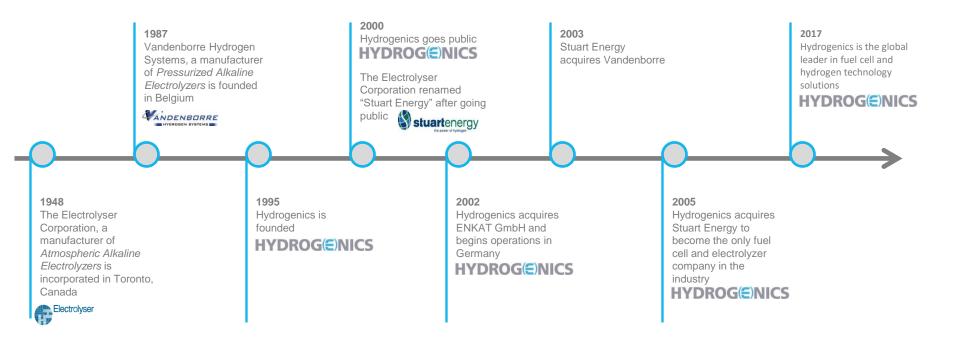
"HyBALANCE : state-of-the-art PEM electrolysis paving the way to multi-MW renewable hydrogen systems"

Filip SMEETS & Denis THOMAS

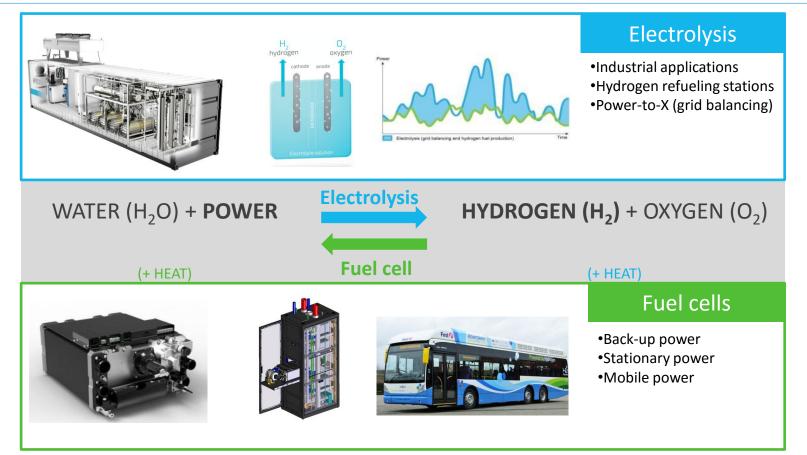
Hydrogenics Europe N.V.

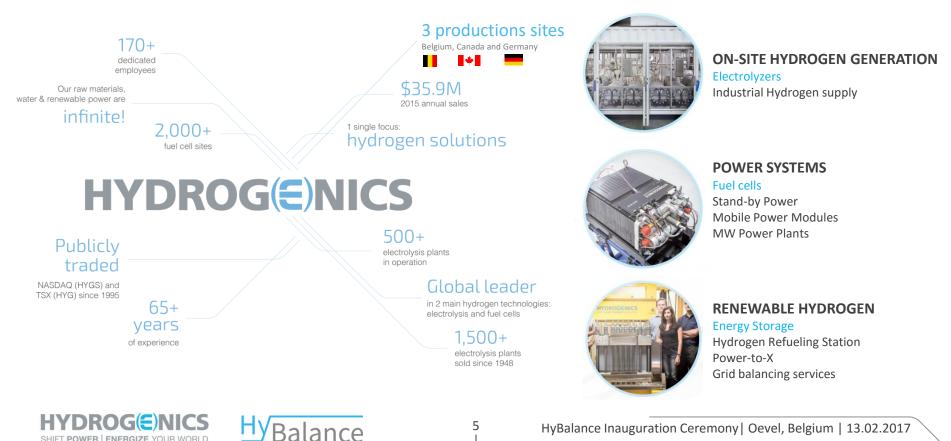
Oevel, Belgium, 13 February 2017

Agenda


1. Hydrogenics in brief

- 2. Hybalance : 1.2 MW PEM electrolyser
- 3. What is next & necessary EU regulatory framework?
- 4. Conclusions


Our History: Over 60 Years of Experience



Electrolysers: Power \rightarrow Hydrogen **Fuel cells:** Hydrogen \rightarrow Power (+ heat)

Hydrogenics in Brief

SHIFT POWER | ENERGIZE YOUR WORLD

5 HyBalance Inauguration Ceremony | Oevel, Belgium | 13.02.2017

Selection of key references

700 bar Hydrogen Refueling Station Aberdeen, Scotland (UK)

1,5 MW PEM P2G (direct injection), Hamburg, Germany

1 MW alkaline P2G (methanation) BIOCAT, Copenhagen, Denmark

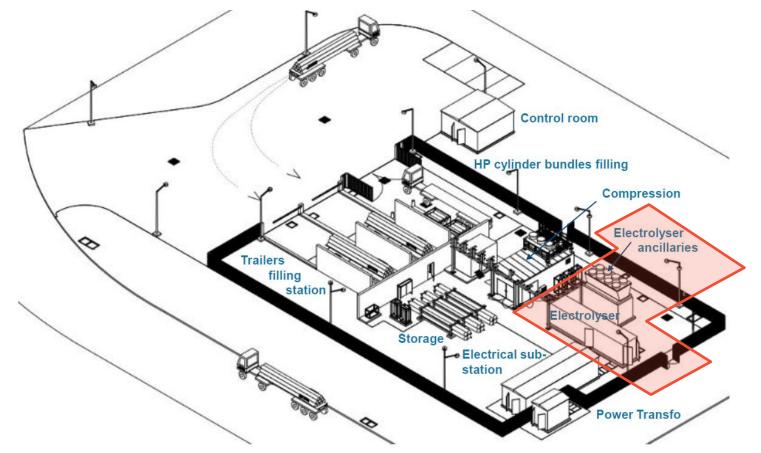
1 MW stationary Fuel cell (H₂ repowering) Kolon, South-Korea

Fuel cell for mobility (H₂ trains) Alstom Coradia iLint , Germany

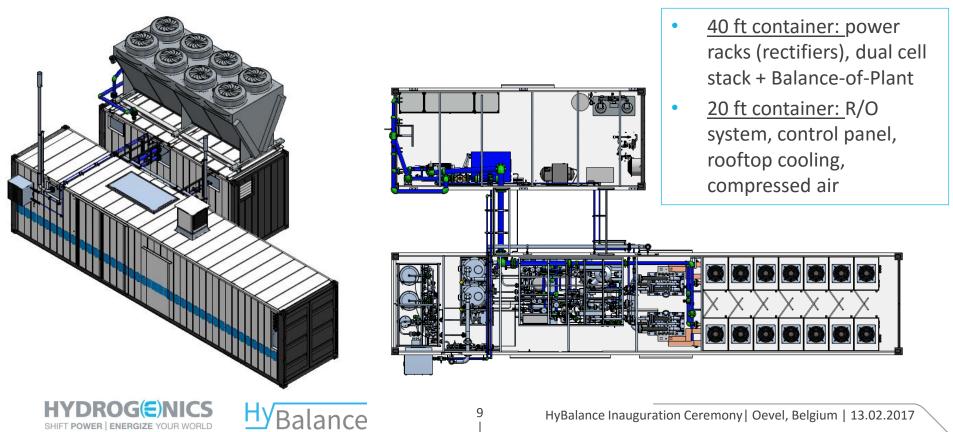
Fuel cell for mobility (H_2 airplane) H2Fly, DLR, Germany

6

1. Hydrogenics in brief


2. Hybalance : 1.2 MW PEM electrolyser

- 3. What is next & necessary EU regulatory framework?
- 4. Conclusions



Hydrogenics' scope in HyBalance 1.2 MW PEM electrolyser

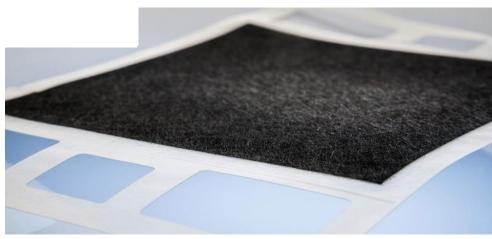
Hydrogenics' scope in HyBalance 1.2 MW PEM electrolyser

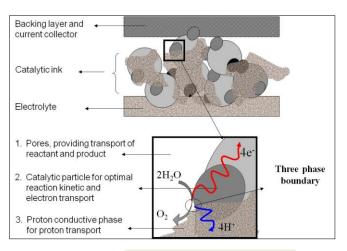
SHIFT POWER | ENERGIZE YOUR WORLD

1.2 MW PEM electrolyser Technical specifications

- **Dual** high efficiency PEM cell stack designed for enhanced grid balancing
- Ideal for dynamic operation (connection with renewables)
 - PEM : 1-100% of operation range no porosity in membrane
 - Response time in power soak: down to seconds
 - Fast response due to small footprint (warm-up + inertization)
- System efficiency: 5.3 kWh/Nm³ at nominal power (~58 kWh/kg)
- Lifetime: stack is designed for >50.000 hours of operation

1.2 MW PEM electrolyser Why Proton Exchange Membrane (PEM)?





HyBalance Inauguration Ceremony | Oevel, Belgium | 13.02.2017

1.2 MW PEM electrolyser Membrane-Electrode-Assembly (MEA) technology

- High purity
- >30 bar operational pressure
- 150 μ m thick
- 2.3 A/cm²

12

1.2 MW PEM electrolyser

Hybalance electrolyser advancements

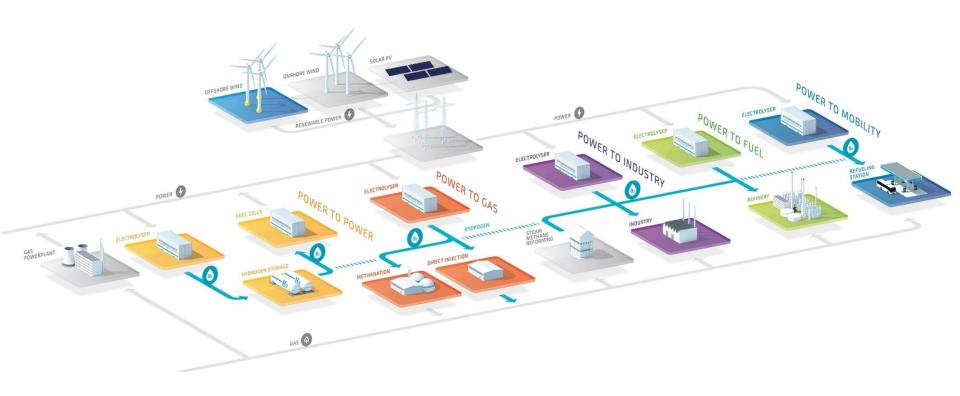
- Environmental
 - Minimal water to drain, minimal noise, minimal footprint
- Design for fast response
 - Power measurement, heated BOP, fast control loops
- Design for high efficiency
 - Frequency controlled utilities, dual stack
- Design for grid support
 - Low harmonic high power factor key IP AC/DC technology

HyBalance

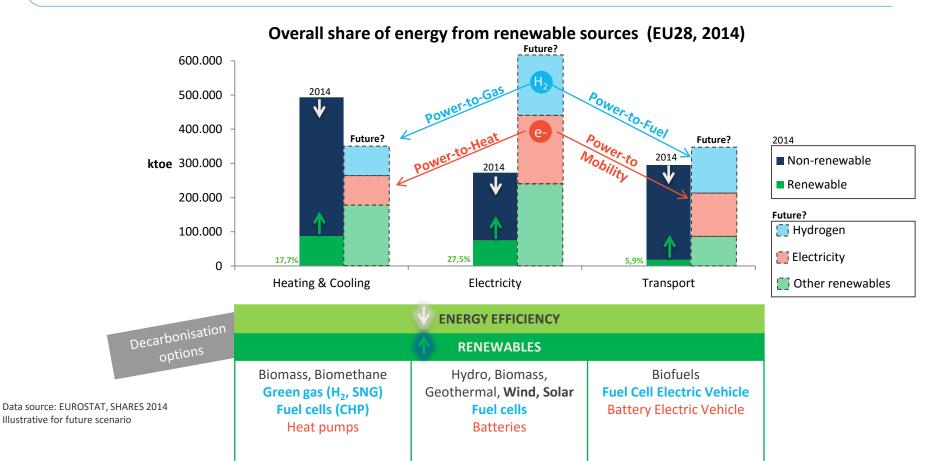
A project which fits perfectly in our development roadmap

- Main trends:
 - From kW to MW
 - From alkaline to PEM
 - More stacks / BOP & More MW/ BOP (Balance-of-Plant)
 - Cost decreases with scale !

Commissing year	Project	Tech	Power	# stacks	BOP	# stacks / BOP	MW / BOP
2013	Falkenhagen	Alkaline	2 MW	24	6	4	0.33 MW
2016	BioCat	Alkaline	1 MW	12	2	6	0.5 MW 🔸
2015	Don Quichotte	PEM	150 kW	1	1	1	0.15 MW
2015	WindGas Reitbrook	PEM	1.5 MW	1	1	1	1.5 MW
2017	HyBalance	PEM	1.2 MW	2	1	2	1.2 MW
2018	???	PEM	10 MW	8	1	8	10 MW



- 1. Hydrogenics in brief
- 2. Hybalance : 1.2 MW PEM electrolyser
- 3. What is next & necessary EU regulatory framework?
- 4. Conclusions


Renewable Hydrogen: various valorization pathways

The role of energy vectors (electricity and hydrogen) in the decarbonisation of the EU energy system

How to unlock the potential of renewable hydrogen

Find sites with suitable conditions "connecting all the dots"

Balance

POWER | ENERGIZE YOUR WORLD

- Integrate the renewable power production in the economics and promote $RES \rightarrow H_2$ as a way to lock-in and future-proof transportation fleet fuel prices
- Create market conditions for renewable hydrogen in regulation ۲
- Reducing the cost of the hydrogen technology by going very large scale. NB: Only the industry can provide a sufficient market to absorb large quantities of hydrogen

Renewable hydrogen Selection of recent demonstration projects

Country	Project	Size	Year	Electrolyser technology	Power	Gas	Industry	Mobility	Fuel
Thailand	EGAT	1.2 MW + 500 kW FC	2017	PEM	•				
Canada	Embridge P2G	2 MW	2017	PEM		•			
Germany	MefCO2	1 MW	2017	PEM					•
Denmark	HyBalance	1.2 MW	2017	PEM			•	•	
UK	Levenmouth	370 kW + 100 kW FC	2016	Alkaline + PEM	•			٠	
Denmark	BioCat	1 MW	2016	Alkaline		•			
Italy	Ingrid	1 MW	2016	Alkaline	•	•	•		
UK	Aberdeen	1 MW	2016	Alkaline				٠	
Germany	WindGas Reitbrook	1.5 MW	2015	PEM		•			
Canada	Raglan Nickel mine	350 kW + 200 kW FC	2015	Alkaline	•				
Belgium	DonQuichote	150 kW	2015	Alkaline + PEM	•			•	~
Germany	WindGas Falkenhagen	2 MW	2014	Alkaline		•			

Main conclusions from these projects:

- 1. Hydrogen **technologies work fine** and deliver according to expectations.
- 2. There is still room for further technical improvement but **no technology breakthrough is expected**.
- 3. There is a important potential for further cost reduction: going from project manufacturing to product manufacturing
- 4. Energy regulatory framework is no suited for these applications and business operation of these projects remains very challenging

Business case drivers &

The need to recognise the added value of renewable hydrogen

Necessary EU regulatory framework

- Clean Energy Package published by the EU Commission (2020-2030)
- Recast Renewable Energy Directive will be the key directive for hydrogen !
- What do we need:
 - Certification mechanism for renewable hydrogen (the 'green button')
 - Added value for final consumer to use renewable hydrogen
 - Large scale applications : industry, fertilizer / fuel production
 - Reduce cost (through mass market/production): project → product manufacturing
 - Level playing field remunerating grid flexibility
 - Political support !

- 1. Hydrogenics in brief
- 2. Hybalance : 1.2 MW PEM electrolyser
- 3. What is next & necessary EU regulatory framework?
- 4. Conclusions

Alkaline & PEM electrolysis | Product's line

		Alkaline		PEM (Proton Exchange Membrane)				
	HySTAT®-15-10/30	HySTAT®-60-10	HySTAT®-100-10	HyLYZER [®] -100-30	HyLYZER [®] -400-30	HyLYZER [®] -3,000-30		
Output pressure		10 barg – 27 barg		30 barg				
Number of cell stacks	1	4	6	1	2	10		
Nominal hydrogen flow	15 Nm³/h	60 Nm³/h	100 Nm³/h	100 Nm³/h	400 Nm ³ /h	3,000 Nm³/h		
Nominal input power	80 kW	300 kW	500 kW	500 kW	2 MW	15 MW		
AC power consumption (utilities included, at nominal capacity)	5.0-5.4 kWh/Nm ³			5.0-5.4 kWh/Nm ³				
Hydrogen flow range	40-100%	10-100%	5-100%	1-100%				
Hydrogen purity	0 ₂ < 2 ppm, N	99.998% $l_2 < 12 \text{ ppm (higher purities)}$	es optional)	99.998% $O_{\rm 2} < 2 \ \rm ppm, \ N_{\rm 2} < 12 \ \rm ppm \ (higher \ purities \ optional)$				
Tap water consumption	<1.7 liters / Nm³ H ₂			<1.4 liters / Nm³ H ₂				
Footprint	20 ft container	40 ft container	40 ft container	40 ft container 40 ft + 20 ft container 600 m ² (indoor		600 m² (indoor)		

HyBalance Inauguration Ceremony | Oevel, Belgium | 13.02.2017

Final words

- Special thanks to FCH-JU, ForskEL (Energinet.dk), Air Liquide and all project partners
- Hydrogenics is leader in clean hydrogen technologies and ready for massive market deployment
- State of the art PEM electrolyser technology developed for HyBalance will help us to build the multi-MW systems needed for the energy transition
- Appropriate regulatory framework and political support are required !

www.hybalance.eu

Thank you for your attention

Filip SMEETS Managing Director Onsite Generation Tel: +32 14 46 21 21 | Email: fsmeets@hydrogenics.com

Denis THOMAS | Renewable Hydrogen EU Regulatory Affairs & Business Development Manager Mobile: +32 479 909 129 | Email: dthomas@hydrogenics.com

Jan VAES Technology Director Tel: +32 14 462 142 | Email: jvaes@hydrogenics.com

