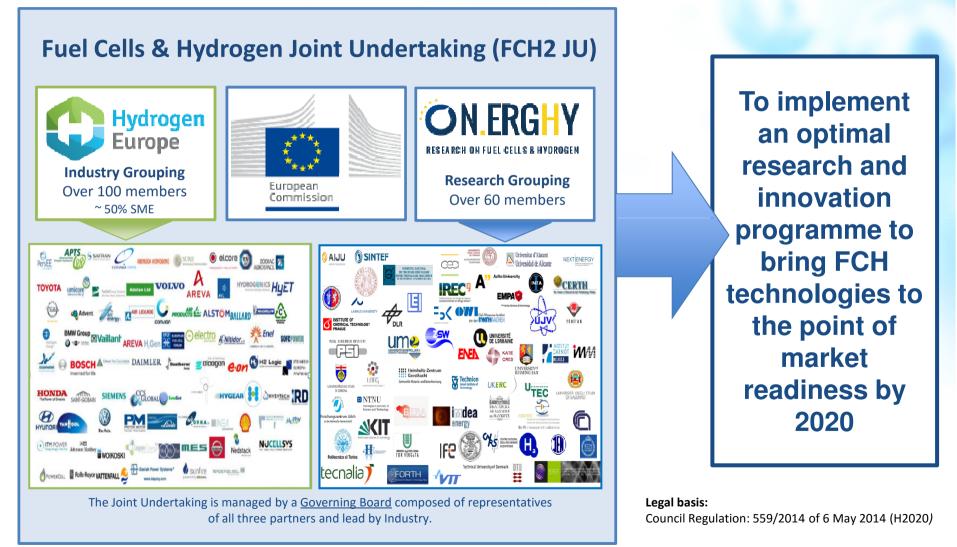


Green Hydrogen Production through electrolysis

Bart Biebuyck, Executive Director



www.fch.europa.eu

Hybalance electrolyser factory acceptance Oevel, 13 February 2017

FCH 2 JU: Strong Public-Private Partnership with a focused objective

Industry-led Public-Private Partnership (PPP)

FCH-JU objectives

H₂ STORAGE FOR GRID BALANCING

Demonstrate on a large-scale hydrogen's capacity to harness power from renewables and support its integration into the energy system

GREEN HYDROGEN PRODUCTION

Increase efficiency and reduce costs of hydrogen production, mainly from water electrolysis and renewables

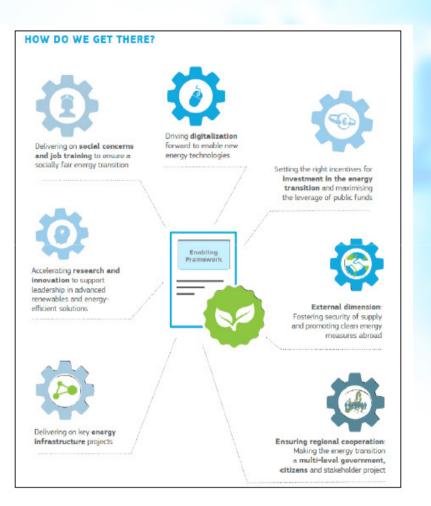
MINIMAL USE OF RITICAL RAW MATERIALS

Reduce platinum loading

CLEAN TRANSPORT

Reduce fuel cell system costs for transport applications

HEAT & ELECTRICITY PRODUCTION

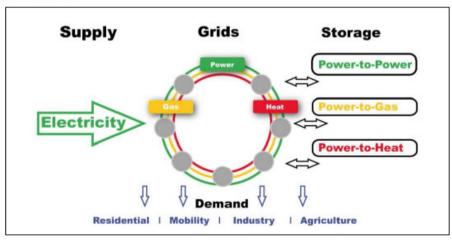

Increase fuel cell efficiency and lifetime

Recent Energy Union initiatives

- A. Energy package "Clean Energy for all Europeans" COM(2016)860
- 3 leading principles:
 - Putting energy efficiency first
 - Achieving global leadership in renewable energies
 - Providing a fair deal for customers

http://ec.europa.eu/energy/sites/ener/files/docum ents/energy_union_package_factsheet_i_v2.pdf

3 relevant documents for H2&FC: see next 2 slides


Recent Energy Union initiatives

<u>A.1 Electricity Market Design Directive</u> *com(2016)864*: attention to flexibility options, a.o. storage, *hence relevant for H2 and FC*

• Definition of energy storage:

"energy storage in the electricity system means the deferring of an amount of the energy that was generated to the moment of use, either as <u>final energy</u> or <u>converted into another energy carrier</u>"

 Staff Working Document Energy Storage SWD(2017)61 – elaboration of role and potential of H2 storage to contribute to flexibility by integrating sectors and thereby enable further decarbonisation of transport, industry, buildings and agriculture

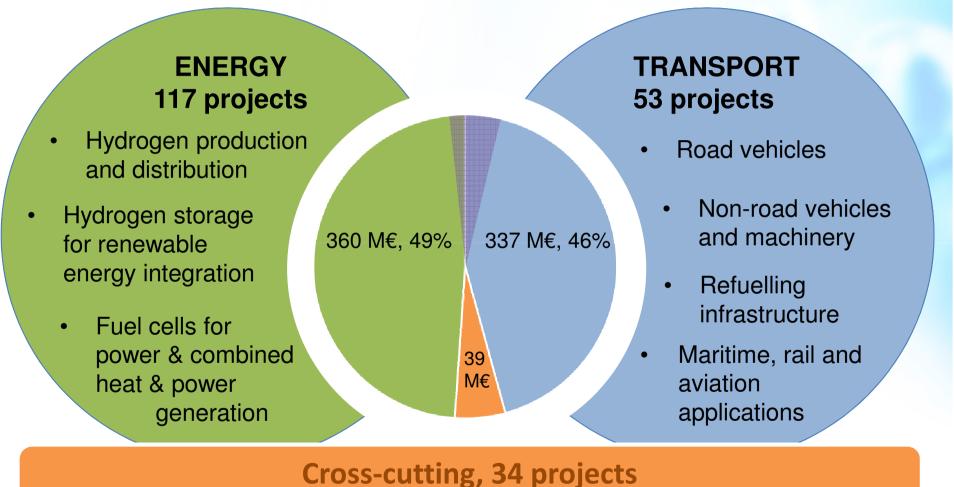
Recent Energy Union initiatives

<u>A.2 New Renewable Energy Directive (RED II)</u> *com(2016)767*: how to achieve binding target of 27% RES by 2030; covers electricity, transport and heating and cooling sectors; *relevant for market uptake of renewable H2 and of Power-to-X*

A.3 Accelerating Clean Energy Innovation COM(2016)763

4 technology focus areas identified, 2 are relevant for H2:

• Strengthening EU leadership on renewables:


Intensify the development of solutions to increase the production and integration of renewables, in particular of variable renewables, into the energy system including the transport sector, through thermal and <u>chemical</u> storage (<u>power-to-gas</u>, power-to-liquids)

• Developing affordable and integrated energy storage solutions:

accelerate full integration of storage devices (<u>chemical</u>, electrochemical, electrical, mechanical and thermal) into the energy system, at domestic, commercial and grid scale

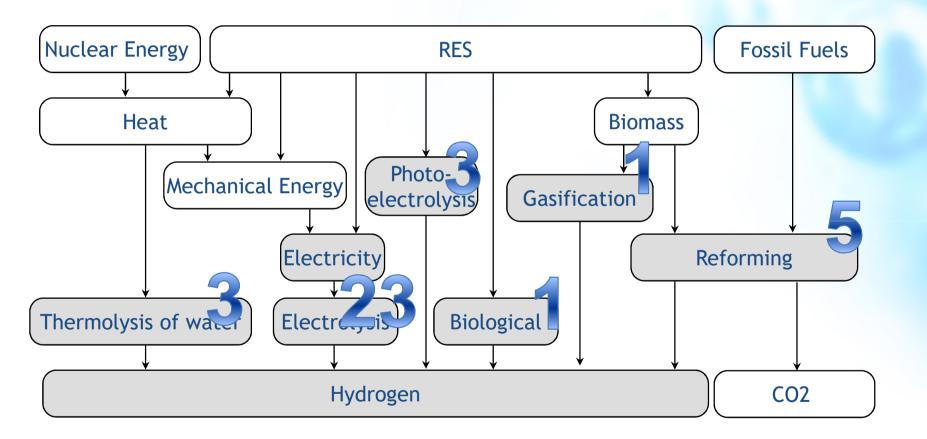
- Batteries, <u>hydrogen</u> and other storage applications both mobile and stationary play a larger systemic role for RES integration and optimisation of operations.
- creation of favourable market conditions for increased dissemination of storage solutions at both consumer- and grid level, including building <u>bridges between the electricity grid, natural gas grid and</u> <u>the transport system as a precondition for a fully renewables-based power supply</u>.

204 projects supported for 737 M€ *Similar leverage of private funding: 782 M€*

(e.g. standards, safety, education, consumer awareness, ...)

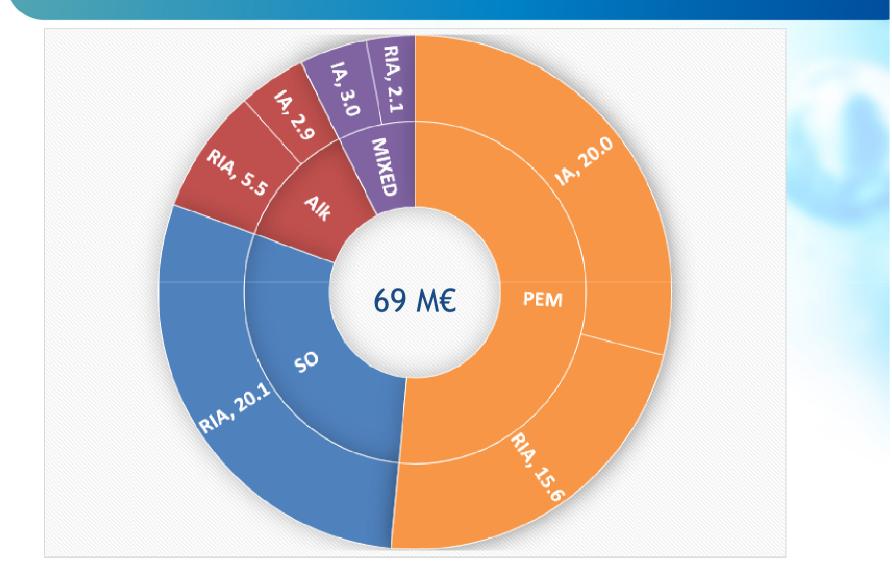
FCH JU Green Hydrogen Study: Main findings STUDY ON HYDROGEN FROM RENEWABLE RESOURCES IN THE EU g_{CO2}/kWh_{H2} TRL and Instants The decision of Decision, sector SMR: 299 Pathways WE: 12 SMR: 343 (2) Raw biogas Natural gas SMR* 126 9 reforming WE: 27 Water electrolyses (WE)* Steam reforming of raw biogas (2) Biomass gasification and pyrolysis (1) (1) Biomass 8 203 gasification 50 (3) Thermo-chemical 7 162 Thermochemical water splitting (3) cvcles 236 Supercritical water gasification of biomass (6) 6 (6) Supercritical H2O TRL ? gasification 5 anaerobic digestion with downstream (2) (5+2) Fermentation 340 . 50 4 (4) PEC Photo-Catalysis (4) 3 2 * Benchmark technology: Main Feedstock: **GHG-Emissions:** 2 Criteria Solar xx g_{co2}/kWh_{H2} Steam methane reforming (SMR) 1 TRL xx g_{CO2}/kWh_{H2} Water electrolysis (WE) Biomass Feedstock

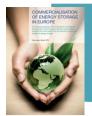
Timeline


2015

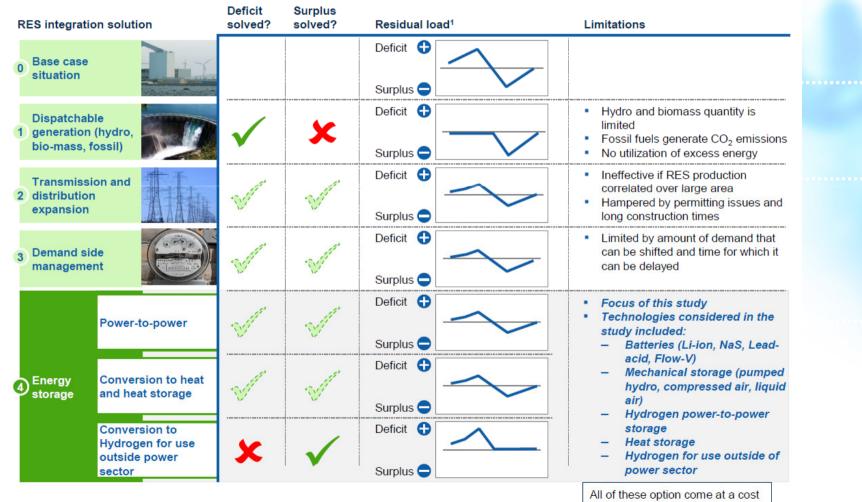
GHG-emissions

.


2030


FCH 1&2 Hydrogen Production Technical Coverage

- 36 projects
- 93 M€ FCH JU support


FCH 1&2 JU Support to electrolyser projects (M€)

FCH JU Energy Storage Study: Main findings

CONTEXT: There are 4 main options for integrating renewables, but all the options have significant limitations

1 Difference between demand and intermittent RES production

7

to society

FCH JU Energy Storage Study: Main findings

At realistic values of hydrogen, large installed electrolyzer capacity would be viable and able to utilize nearly all excess RES energy in the 2050 horizon

> Non-hydrogen P2P and heat storage will only be able to absorb a small part of the excess energy generated, resulting in the necessity of curtailment – from societal point of view, such electricity could be used at close to zero cost

> The excess energy can be used to produce hydrogen via water electrolysis for re-electrification or use outside of the power sector

If the value of hydrogen at the point of production can reach a price in the range of 2-4 €/kg very large installed electrolyzer capacity would be economically viable and able to utilize

Such use of the excess electricity would create value for the society and the surplus could be divided between the electricity and hydrogen producer

nearly all of the excess electricity

High connectivity Low connectivity Economic demand¹ for electrolyzers assuming a best case of 2 EUR/kg of H2 GW 170 115 46 4 2030 High-RES 2050 High-RES **Reduction in excess energy** Percent -25 -97 -99 -100

Germany archetype

1 Installed electrolyzer capacity achieving 60 EUR/installed kW per year of benefits at given hydrogen plant gate cost – this corresponds to 370 EUR/kW capex, 8% WACC, annual opex at 1.2% of total capex and 10 years lifetime (FCH JU 2014)

Assumes electricity for free, no grid connections fees and no time-shift storage is in place.

FCH JU Early business Cases Study:

#	Business cases	Regions	Main factors				
1	Merchant – On-site General case	 Denmark (2017/2025) France (2017/2025) 	High merchant price Low electricity price				
2	Mobility – On-Site	 France (2017/2025) Denmark (2017/2025) Germany (2025) Great Britain (2025) 					
3	Mobility – Semi centralised	 France (2025) Denmark (2025) Germany (2025) 	Low electricity cost Injection and Grid services				
4	Large industry - Refinery	 Denmark (2025) Germany (2025) 	Asymetric reserve in DK & DE				
ACTEBEL							

TRACTEBEL engie

FCH JU Support to Research Projects

• Electrolysers

Alkaline (AE) and PEM: 2015 data vs 2017 MAWP targets

	FCH JU project results 2015		MAWP target		non-European
	PEME	AE		2017	SoA
CAPEX, M€/(t/d)		S	<	3.7	1.7-3.5
Energy consumption, kWh/kg			<	55	65
Efficiency degradation, %/y	S	e	<	2	1.1
Min load, % of nominal capa.	S	-	<	5	0
Max load, % of nominal capa.		-	>	150	100
Hot start, seconds	S	I	<	10	10
Cold start, seconds			<	120	300

FCH JU support to Demonstration projects

Industry acknowledges the potential of Hydrogen to the greening of industrial products through increased penetration of renewables

Transport, Steel industry, Refineries, Chemical industry

The Hybalance project is the first and most advanced of the large electrolyser demonstration projects of the FCH JU

- **Duration:** 5 years (1/10/2015-30/9/2020)
- Budget: 15.2M€, 8MEuro FCH JU funding + 2.6M€ National funding
- Scope: 1MW PEM electrolyser serving industrial and transport markets, providing at the same time electricity grid services

